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Outline

• Interactions between experiments, data and interpretation

• Models of Biological Processes and Systems

– Description (via controlled vocabularies and ontologies)

– Reconstruction (via time-course analysis and statistical 

procedures)

– Model Repositories

• Computational “Searches” for “models” (parameters, new 

interactions, etc)

– Problems

• Low sampling rate

• Upsampling, optimization schemes

• Models limitations
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Analyzing Time-course Microarray 

Experiments
• Microrarray Experiments and Data

• “Enrichment” studies via Controlled Vocabularies and 

Ontologies (Gene Ontology and others)

• Model “reconstruction” 

– Similarity studies

– Segmentation algorithms

– Kernel methods

– Results

• Future work

• Joint work with Bud Mishra, Courant NYU, Naren Ramakrishnan, 

Virginia Tech, Daniele Merico, University of Toronto, many others at 

NYU and UNIMIB
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Microarray Experiments

• From laser scans readings, a 
numerical value 
corresponding to the relative 
expression of a “gene” is 
produced.

• When each raw data array 
scan corresponds to a given 
time-point under a specific 
condition, the final gene 
expression data matrix 
represents the temporal 
evolution of the gene 
expression.
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Standard data-mining approaches to 

microarray data
• The results of microarray experiments have been studied by 

means of statistical techniques

• Aim:

– To group together genes/probes that “behave similarly” under 
different experimental conditions (usually achieved by clustering)

• Successful endeavor

– Several tools and libraries are provided to perform this kind of 
studies

– Several publications produced with results in this field

– Many of the studies reported still contain a considerable amount of 
“hand curation”
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Standard data-mining approaches to 

microarray data
• The expression matrix is usually analyzed 

according to standard techniques:

– Clustering

enables to group together genes with a 
similar expression profile

– Gene Ontology (GO) terms “Enrichment”

enables to find statistically over-represented 
terms in given set of genes - i.e., clusters -
thus providing some “functional” 
characterization

• usually computed using some statistical 
significance test; e.g., Fisher’s exact test, 
Hypergeometric Test, Binomial Test, 2 Test, 
plus various corrections

- Ribosome
-
Translation

- Spindle
- Cell Wall
- Budding

- Glucose
Transport
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Gene Ontology (GO)

• GO is a controlled vocabulary 

for the functional annotation of 

genes

• GO is composed by three 

independent classifications, 

each of them having a 

hierarchical DAG structure

– MF: Molecular Function 

(biochemical 

activity and molecule type)

– BP: Biological Process

– CC: Cellular Component

www.geneontology.org
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Time-course microarray data
• Clustering is performed with all time-points together spanning the whole 

time-course

…time-1 time-2 time-3 time-ntime-4

• This amounts to assume that if genes are co-regulated across some time-
points, they will also be co-regulated throughout the whole time-course

• However, co-regulation may be interrupted at a certain point

– Different short-time and long-time response, e.g., DNA damage

– Multiple-stages transcriptional program, e.g., development
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GOALIE: a twist on “enrichment” studies

• GOALIE introduces a twist on enrichment studies by taking into account 

possible temporal variations of biological processes in time-course 

measurements

• The key observation is that an “enrichment” of a set of genes/probes may vary 

depending on the length of the (time) vector of measurements

• GOALIE assumes that the a time-course experiment has been broken down into 

windows and that each window has been clustered separately

• Afterward the enrichment of each cluster in a window is compared with the 

enrichment of clusters in neighboring windows and all the possible relations are 

built in a DAG

– GOALIE provides several interfaces to explore, summarize and compare the DAGs 

pertaining to different experiments
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Piece-wise approach to 

time-course microarray data
• We split the time-course into discrete windows, 

• Then compute clusters for each window separately,

• Finally reconnect clusters from adjacent windows exploiting similarity of 

Gene Ontology cluster enrichments

…time-1 time-2 time-3 time-7time-4

- Ribosome

- Translation

- Glucose Trans.

- Ribosome

- Translation

- Aminoacid Bios

- Glucose Trans.

- Aminoacid Bios

- Cell wall
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Computational Modules

• In order to enhance the GOALIE software we concentrated on 
the components computational modules

• Computational modules are required for:

1.Clustering (Clique [Shamir et al.], K-means, SVM, SOMs
etc.; tool Genesis from TU-Graz and many other ones)

2.Segmentation (PNAS 2010 [Ramakrishnan et al.]

3.Gene Ontology (GO) enrichment (Fisher’s exact test etc.)

4.Computing similarity among clusters from adjacent time-
windows, based on GO enrichment (ex-novo – Kernel 
function)

5.Select only relevant connections among clusters (ex-novo)

• In the rest of this presentation, the focus will be on the Kernel 
approach developed for module #4; #5 has been published in 
(CaOR 2010 [Antoniotti et al.])

NYU CMACS NSF PI Meeting



2010-10-28 13

Computing “Similarity” Using Graph 

Kernels
• The results of the first three steps of the algorithm consist in the 

“enrichment” of each cluster by a set of representative labels 
(GO terms)

• Next we want to see how similar two clusters are based on this 
labeling

• Note

– This check may be useful to a biologist trying to track biological 
processes over time; e.g., trying to see which genes are involved in 
a certain process as time evolves

– From a more abstract point of view this is a procedure that 
measures how two objects are similar

• The similarity between the two objects is done in a re-described space 
(possibly with lower dimensionality)

• In our case there is some more structure we want to exploit 
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Computing “Similarity” Using Graph 

Kernels
• Peculiarities of our method

– Our objects are clusters ordered in a time-course

– The labeling by GO terms does have a structure imposed by their 
hierarchical arrangement in a DAG

• Previous work

– Similarity between objects of this kind is computed using various measures

– In the specific case of labeling of gene sets, flat lists of symbols were used

• Similarity computed Jaccard index

• Graph kernels can instead be used to take into account the DAG nature 
of the GO labels

– Question: what is the performance of our Graph Kernel method w.r.t. a 
simple Jaccard index calculation?



J(X,Y) 1
XY

XY
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Kernel Methods

When the existence of a non-linear pattern prevents from using a linear 
classification algorithm, the problem can be solved introducing a 
mapping function  which projects the problem in a higher dimension 
space, where the pattern is linear

)(: NMRR MN 

NYU CMACS NSF PI Meeting



2010-10-28 16

Kernel methods

• How to perform the mapping?

– We don’t really have to know the mapping  if we introduce 
a Kernel function k

– The internal product between the remapped points is 
compute by k thus avoiding the explicit computation of 
(the so called Kernel Trick)

• In order to be a proper Kernel, a function must be positive semi-
definite and symmetric (Mercer’s Theorem)

• A Kernel function can also be used to induce a dissimilarity 
function (that’s exactly what we do)

F
yxyxk )(),(),( 
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A Kernel Function for 

Gene Ontology Graph Comparison
• Input: GO enrichment graph; i.e., sub-graphs of the overall GO 

taxonomy for each cluster

– Each vertex is identified by a label - the GO term name - which is then used 

for walk matching

– Each vertex has also an associated p-value label, from Fisher’s exact test, 

which is then used to compute a dissimilarity score between the walks

• We work on GO sub-graphs (forests), obtained by filtering in only the terms with 

p-value < significance threshold

Compute dissimilarity

Colored dots represent GO terms with p-value < significance threshold
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A Kernel Function for 

Gene Ontology Graph Comparison
• The computation (informally) proceeds in the following way

1. We compute the (direct) graph product between the two GO sub-graphs

2. We identify common walks in the product GO sub-graph

3. We compute a weighted dissimilarity score for each walk

4. We sum all the walk dissimilarities to get the total dissimilarity

x

Graph Product

Shared walk weighting

and dissimilarity comp.
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A Kernel function for 

Gene Ontology graph comparison
• What are the advantages of our approach?

– We explicitly take into account the hierarchical structure of GO cluster enrichments 
(Zoppis et al. 07 ISBRA)

• Next we concentrated on evaluating our approach
– For a benchmark for our Kernel function we set up a comparison with a Jaccard

Coefficient-based dissimilarity, working on GO enrichments as flat lists of terms
• Once the dissimilarities are computed with both methods, we select only significant 

similarity patterns among clusters from adjacent windows (*)

– We also consider a model manually curated by an expert

– To quantitatively assess performance, we adopt the Loganantharaj et al (BMC 
Bioinformatics, 2006) Total Cluster Cohesiveness (TCC) score, which enables to 
assess the homogeneity of a cluster in terms of its GO terms; we compute TCC for 
groups of connected clusters (Merico et al. 07 KES-WIRN)

w1-c1

w1-c2

w2-c1

w2-c2

w1-c3 w2-c3

w1c1+w2c1,2

w1c3+w2c3

TCC
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GOALIE Interface

Clusters connection tree
Each level a “window”

Cluster InformationConnection informationClusters information

Micro-array accessions

GO categories
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GOALIE Interface

GO categories describing 

genes in “source” cluster

GO categories shared 

with “destination” cluster

GO categories describing 

“source” cluster but not 

“destination”
GO categories

describing 

“destination” cluster 

but not “source”
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GOALIE Interface
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GOALIE Interface

GOALIE summary comparison view of two cell cycle experiments
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Yeast Cell Cycle benchmark

• Cell Cycle is a multi-stage phenomenon (phases), therefore co-
regulation patterns may change across time

– In [Ramakrishnan et al. 2010] we consider different datasets regarding YCC and Yeast 
Metabolic Cycle

– In particular, we consider two windows: G1>S and G2>M>G1

• We use Spellman microarray yeast cell cycle data (1998; a well known 
benchmark for testing novel analysis tools and methods)

– CDC15-mutant synchronization
– ALPHA factor synchronization
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segmentation
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Yeast

“Metabolic”

Cycle

Segmentation

Comparison:

8 segments

inferred
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Results
Inferred cluster 

connections

Black solid lines represent connections found 

both by the manual and automatic methods; Bold 

lines represent the strongest connections. Black 

dashed lines represent connections found only 

by the manual method. Grey dash-dotted lines 

represent connections found only by the 

automatic methods..
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Results

Results overview

• Main results were generated for Alpha subset (2 windows), displaying a 
substantial convergence between the three methods

– Numerical results are comparable with Jaccard method

– Kernel method is more “correct” from the information point of view

– Kernel method is more computationally intensive

• Preliminary results were also generated for CDC15 subset, displaying a better 
performance of Kernel over Jaccard

Results (Alpha subset) Distance TCC threshold

Jaccard 94.28 0.05

Jaccard 92.95 0.01

Jaccard 92.95 0.005

Kernel 92.95 0.01

Kernel 94.63 0.05

Manual 92.27 N/A
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Problems

• Low sampling rate: biological experiments usually have a way 
too low sampling rate

– Ok for long term observations at equilibrium

– Not ok for transients and discontinuities detection

• Assumption: transients and discontinuities are interesting

• Solutions

– Upsampling after fitting the data to a set of interpolating functions 
(rational functions or polynomials)

– Merging of different data sources

• Several institutions and databanks (e.g., GEO) contain several 
experiments

• “Related” experiments can be combined to yield a Virtual Time-Course 
Experiment that organized the extant corpus of knowledge
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Current and future research

• Connection ordering between clusters

– Method based on optimization of (average) entropy orders 

connections according to a decrease in the uncertainty of the result 

graph Kernel similarity between the labeling of two clusters 

(Antoniotti et al. CaOR 2010)
• “Complementary” with work on segmentan based on KL divergence published in 

Ramakrishnan et al. PNAS 2010

• Sample classification (i.e. VTE reconstruction) can be performed 

if there is an appropriate model of the underlying biological 

system

– Ontology research

• Signs Symptoms Findings Workshop in Milan, 3-4 September 2009
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Current and future research

• Temporal Series Reconstruction is a hard problem (deterministically 
akin to the Traveling Salesman Problem)

– Bar-Joseph models based on EM optimization procedure

– Magwene and Kim procedure based on heuristic MST built on top of PQ-
trees

– Lack of data points is a problem

• Prediction Models

– What happens if we “extend” a time course in the future?
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