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Outline

. Interactions between experiments, data and interpretation

. Models of Biological Processes and Systems
—  Description (via controlled vocabularies and ontologies)

— Reconstruction (via time-course analysis and statistical
procedures)

—  Model Repositories
. Computational “Searches” for “models” (parameters, new
Interactions, etc)

—  Problems
. Low sampling rate
. Upsampling, optimization schemes
. Models limitations

2010-10-28 NYU CMACS NSF Pl Meeting 2
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Analyzing Time-course Microarray
Experiments

2010-10-28

Microrarray Experiments and Data

“‘Enrichment” studies via Controlled Vocabularies and
Ontologies (Gene Ontology and others)
Model “reconstruction”

— Similarity studies

— Segmentation algorithms

— Kernel methods

— Results

Future work

Joint work with Bud Mishra, Courant NYU, Naren Ramakrishnan,
Virginia Tech, Daniele Merico, University of Toronto, many others at
NYU and UNIMIB

NYU CMACS NSF Pl Meeting 3
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Microarray Experiments
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*  When each raw data array
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time-point under a specific
condition, the final gene
expression data matrix
represents the temporal
evolution of the gene % AT
expression. n

apots
Fefies

é efle

BX e ssion
levels

2010-10-28 NYU CMACS NSF PI Meeting 5



20NV

8IMIB 2PRX ! ) 7 [P RED
bioinformatics ' N . 5 | v 4 B e
S [

milanobicocca _

J

[=-]
—
(=]
=
)
(-]

Standard data-mining approaches to
microarray data

* The results of microarray experiments have been studied by
means of statistical techniques

« Aim:
— To group together genes/probes that “behave similarly” under
different experimental conditions (usually achieved by clustering)

 Successful endeavor

— Several tools and libraries are provided to perform this kind of
studies

— Several publications produced with results in this field

— Many of the studies reported still contain a considerable amount of
“hand curation”

2010-10-28 NYU CMACS NSF PI Meeting 6
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Standard data-mining approaches to
microarray data

* The expression matrix is usually analyzed

according to standard techniques:
- Ribosome
_ Clustering Translation
enables to group together genes with a
similar expression profile
- Spindle
o ] - cell wall
— Gene Ontology (GO) terms “Enrichment - Budding
enables to find statistically over-represented
terms in given set of genes - i.e., clusters -
thus providing some “functional”
characterization - Glucose
« usually computed using some statistical Transport
significance test; e.g., Fisher’s exact test,
Hypergeometric Test, Binomial Test, x? Test,

plus various corrections

2010-10-28 NYU CMACS NSF Pl Meeting 7
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Gene Ontology (GO)

Gene_OmoIo‘g'y ‘

GO is a controlled vocabulary
for the functional annotation of
genes

« GO is composed by three
iIndependent classifications,
each of them having a

hierarchical DAG structure

— MF: Molecular Function

(biochemical
activity and molecule type)

— BP: Biological Process
— CC: Cellular Component

wWww.geneontology.orqg

2010-10-28 NYU CMACS NSF PI Meeting 8
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Time-course microarray data

« Clustering is performed with all time-points together spanning the whole

time-course
@000 0000 0000 0000 Q00O
0000 0000 0000 0000 CY Yox |
Q000 0000 0000 0000 CYex X
0000 0000 0000 0O@O0OO Q00 ®
t|m|e 1 timle-2 tin}e-3 timle-4 timle-n

« This amounts to assume that if genes are co-regulated across some time-
points, they will also be co-regulated throughout the whole time-course

 However, co-regulation may be interrupted at a certain point
— Different short-time and long-time response, e.g., DNA damage
— Multiple-stages transcriptional program, e.g., development

2010-10-28 NYU CMACS NSF Pl Meeting 9
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GOALIE: a twist on “enrichment” studies

« GOALIE introduces a twist on enrichment studies by taking into account
possible temporal variations of biological processes in time-course
measurements

« The key observation is that an “enrichment” of a set of genes/probes may vary
depending on the length of the (time) vector of measurements

« GOALIE assumes that the a time-course experiment has been broken down into
windows and that each window has been clustered separately

« Afterward the enrichment of each cluster in a window is compared with the
enrichment of clusters in neighboring windows and all the possible relations are
built in a DAG

— GOALIE provides several interfaces to explore, summarize and compare the DAGs
pertaining to different experiments

2010-10-28 NYU CMACS NSF PI Meeting 10
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Piece-wise approach to
time-course microarray data

+ We split the time-course into discrete windows,
« Then compute clusters for each window separately,

* Finally reconnect clusters from adjacent windows exploiting similarity of
Gene Ontology cluster enrichments

BOUNIVERSIT
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Computational Modules

* |n order to enhance the GOALIE software we concentrated on
the components computational modules

« Computational modules are required for:

1. Clustering (Clique [Shamir et al.], K-means, SVM, SOMs
etc.; tool Genesis from TU-Graz and many other ones)

2.Segmentation (PNAS 2010 [Ramakrishnan et al.]
3.Gene Ontology (GO) enrichment (Fisher’s exact test etc.)

4.Computing similarity among clusters from adjacent time-
windows, based on GO enrichment (ex-novo — Kernel
function)

5. Select only relevant connections among clusters (ex-novo)

* Inthe rest of this presentation, the focus will be on the Kernel
approach developed for module #4; #5 has been published in
(CaOR 2010 [Antoniotti et al.])

2010-10-28 NYU CMACS NSF Pl Meeting 12
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Computing “Similarity” Usmg Graph
Kernels

« The results of the first three steps of the algorithm consist in the
“‘enrichment” of each cluster by a set of representative labels

(GO terms)

* Next we want to see how similar two clusters are based on this
labeling

 Note

— This check may be useful to a biologist trying to track biological
processes over time; e.g., trying to see which genes are involved in
a certain process as time evolves

— From a more abstract point of view this is a procedure that
measures how two objects are similar

« The similarity between the two objects is done in a re-described space
(possibly with lower dimensionality)

* In our case there is some more structure we want to exploit

2010-10-28 NYU CMACS NSF PI Meeting 13
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Computing “Similarity” Using Graph

Kernels

« Peculiarities of our method
— Our objects are clusters ordered in a time-course

— The labeling by GO terms does have a structure imposed by their
hierarchical arrangement in a DAG
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* Previous work
— Similarity between objects of this kind is computed using various measures

— In the specific case of labeling of gene sets, flat lists of symbols were used
» Similarity computed Jaccard index

XY

XY

« Graph kernels can instead be used to take into account the DAG nature
of the GO labels

— Question: what is the performance of our Graph Kernel method w.r.t. a
simple Jaccard index calculation?

J(X,Y)=1-

2010-10-28 NYU CMACS NSF Pl Meeting 14
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Kernel Methods
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When the existence of a non-linear pattern prevents from using a linear
classification algorithm, the problem can be solved introducing a
mapping function ® which projects the problem in a higher dimension
space, where the pattern is linear
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Kernel methods

* How to perform the mapping?
— We don't really have to know the mapping @ if we introduce
a Kernel function k

k(x, y) =(£(x), 6(¥)).

— The internal product between the remapped points is
compute by k thus avoiding the explicit computation of ®

(the so called Kernel Trick)

* |In order to be a proper Kernel, a function must be positive semi-
definite and symmetric (Mercer’s Theorem)

» A Kernel function can also be used to induce a dissimilarity
function (that’s exactly what we do)

2010-10-28 NYU CMACS NSF Pl Meeting 16
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A Kernel Functlon for
Gene Ontology Graph Comparison

* Input: GO enrichment graph; i.e., sub-graphs of the overall GO

taxonomy for each cluster

— Each vertex is identified by a label - the GO term name - which is then used
for walk matching

— [Each vertex has also an associated p-value label, from Fisher's exact test,
which is then used to compute a dissimilarity score between the walks

*  We work on GO sub-graphs (forests), obtained by filtering in only the terms with
p-value < significance threshold

f‘ : :é Compute dissimilarity i ; :‘

Colored dots represent GO terms with p-value < significance threshold
2010-10-28 NYU CMACS NSF Pl Meeting 17
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A Kernel Function for
Gene Ontology Graph Comparison

The computation (informally) proceeds in the following way
1. We compute the (direct) graph product between the two GO sub-graphs
2. We identify common walks in the product GO sub-graph
3. We compute a weighted dissimilarity score for each walk
4. We sum all the walk dissimilarities to get the total dissimilarity

z j g: Graph Product i j E;
Shared walk weighting
and dissimilarity comp.

2010-10-28 NYU CMACS NSF PI Meeting 18
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e Ontology graph comparison

 What are the advantages of our approach?

We explicitly take into account the hierarchical structure of GO cluster enrichments
(Zoppis et al. 07 ISBRA)

* Next we concentrated on evaluating our approach

2010-10-28

For a benchmark for our Kernel function we set up a comparison with a Jaccard
Coefficient-based dissimilarity, working on GO enrichments as flat lists of terms
. Once the dissimilarities are computed with both methods, we select only significant
similarity patterns among clusters from adjacent windows (*)

We also consider a model manually curated by an expert

To quantitatively assess performance, we adopt the Loganantharaj et al (BMC
Bioinformatics, 2006) Total Cluster Cohesiveness (TCC) score, which enables to
assess the homogeneity of a cluster in terms of its GO terms; we compute TCC for
groups of connected clusters (Merico et al. 07 KES-WIRN)

[ wi-cl ﬁ wa-cl | wilcl+w2cl,2
| wlc2 | w2-c2 | E> : TCC

[ wic3 - w23 | wlc3+w2c3

NYU CMACS NSF Pl Meeting 21
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GOALIE Interface
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Yeast Cell Cycle benchmark

Clb1,2-COK

/ - CIna-CoK
Clb3.4-
CDK
CIn1,2-CDK

Clbs,6-COK

« Cell Cycle is a multi-stage phenomenon (phases), therefore co-
regulation patterns may change across time

— In[Ramakrishnan et al. 2010] we consider different datasets regarding YCC and Yeast
Metabolic Cycle

— In particular, we consider two windows: G1>S and G2>M>G1

 We use Spellman microarray yeast cell cycle data (1998; a well known

benchmark for testing novel analysis tools and methods)
— CDC15-mutant synchronization
— ALPHA factor synchronization

2010-10-28 NYU CMACS NSF PI Meeting 26
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Results
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Hexose transport
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Black solid lines represent connections found

both by the manual and automatic methods; Bold
lines represent the strongest connections. Black
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Contractile ring

Ribosomal small subunit
bud neck

* mitotic spindle elongation
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dashed lines represent connections found only
by the manual method. Grey dash-dotted lines
represent connections found only by the
automatic methods..
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Results

Results overview
« Main results were generated for Alpha subset (2 windows), displaying a
substantial convergence between the three methods
— Numerical results are comparable with Jaccard method
— Kernel method is more “correct” from the information point of view
— Kernel method is more computationally intensive

« Preliminary results were also generated for CDC15 subset, displaying a better
performance of Kernel over Jaccard

Results (Alpha subset) Distance | TCC threshold
Jaccard 94.28 0.05
Jaccard 92.95 0.01
Jaccard 92.95 0.005
Kernel 92.95 0.01
Kernel 94.63 0.05
Manual 92.27 N/A
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Problems

« Low sampling rate: biological experiments usually have a way
too low sampling rate
for long term observations at equilibrium

— Not ok for transients and discontinuities detection
« Assumption: transients and discontinuities are interesting

« Solutions
— Upsampling after fitting the data to a set of interpolating functions
(rational functions or polynomials)
— Merging of different data sources

« Several institutions and databanks (e.g., GEO) contain several
experiments

+ “Related” experiments can be combined to yield a Virtual Time-Course
Experiment that organized the extant corpus of knowledge
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Current and future research

« Connection ordering between clusters

— Method based on optimization of (average) entropy orders
connections according to a decrease in the uncertainty of the result
graph Kernel similarity between the labeling of two clusters
(Antoniotti et al. CaOR 2010)

+ “Complementary” with work on segmentan based on KL divergence published in
Ramakrishnan et al. PNAS 2010

- Sample classification (i.e. VTE reconstruction) can be performed
If there Is an appropriate model of the underlying biological
system

— Ontology research
« Signs Symptoms Findings Workshop in Milan, 3-4 September 2009
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Current and future research

« Temporal Series Reconstruction is a hard problem (deterministically
akin to the Traveling Salesman Problem)

— Bar-Joseph models based on EM optimization procedure

— Magwene and Kim procedure based on heuristic MST built on top of PQ-
trees

— Lack of data points is a problem

* Prediction Models
— What happens if we “extend” a time course in the future?

2010-10-28 NYU CMACS NSF Pl Meeting 32



g <DEC_'-[_ISTL'D] 2~
dIMIB A SR
bioinformatics B |
milano bicocca \ BICOCCAN .

Acknowledgements e I gngnarec:

nfi;fff? @é rg}nvenr the Future
*  BIiMiB Lab, Dipartimento Informatica Sistemistica
Comunicazione Milano-Bicocca bimib.disco.unimib.it |F@M
— |. Zoppis, M. Carreras, G. Genta, G. Mauri, A. Farinaccio, L.
Vanneschi
«  Courant Bioinformatics Group New York University Do = @r‘%’ﬁé‘i}%
— S. Kleinberg, A. Sundstrom, A. Witzel, S. Paxia, B. Mishra e armReTe
* Virginia Tech
— S. Tadepalli, N. Ramakrishnan
« |FOM, Milan P
— M. Gariboldi, J. Reid, M.Pierotti VAN st
* Bader Lab, Donnelly Centre for Cellular and Biomolecular
Research, University of Toronto
_ G. Bader, D. Merico RegioneLombardia

* Virtual Physiological Human Network of Excellence,
European Commission FP7

¢ National Science Foundation

7~ WHERE DISCOVERTIES BEGIN

* Regione Lombardia
* National Science Foundation EMT Program =
*  European Commission Marie Curie Program FP6

2010-10-28 NYU CMACS NSF PI Meeting 34



aiMIB
bioinformatics
milanobicocca

Thank you!



